4 research outputs found

    Reducing Transducer Equivalence to Register Automata Problems Solved by "Hilbert Method"

    Get PDF
    In the past decades, classical results from algebra, including Hilbert\u27s Basis Theorem, had various applications in formal languages, including a proof of the Ehrenfeucht Conjecture, decidability of HDT0L sequence equivalence, and decidability of the equivalence problem for functional tree-to-string transducers. In this paper, we study the scope of the algebraic methods mentioned above, particularily as applied to the functionality problem for register automata, and equivalence for functional register automata. We provide two results, one positive, one negative. The positive result is that functionality and equivalence are decidable for MSO transformations on unordered forests. The negative result comes from a try to extend this method to decide functionality and equivalence on macro tree transducers. We reduce macro tree transducers equivalence to an equivalence problem for some class of register automata naturally relevant to our method. We then prove this latter problem to be undecidable

    Some Remarks on Deciding Equivalence for Graph-To-Graph Transducers

    Get PDF
    We study the following decision problem: given two mso transductions that input and output graphs of bounded treewidth, decide if they are equivalent, i.e. isomorphic inputs give isomorphic outputs. We do not know how to decide it, but we propose an approach that uses automata manipulating elements of a ring extended with division. The approach works for a variant of the problem, where isomorphism on output graphs is replaced by a relaxation of isomorphism
    corecore